Factorise each of the following : $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$
$27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$ $=(3 p )^{3}-\left(\frac{1}{6}\right)^{3}-3(3 p )\left(\frac{1}{6}\right)\left[3 p -\frac{1}{6}\right]$
$=\left[3 p -\frac{1}{6}\right]^{3}$ [Using Identity $VII$]
$=\left(3 p -\frac{1}{6}\right)\left(3 p -\frac{1}{6}\right)\left(3 p -\frac{1}{6}\right)$
Find the degree of the polynomials given : $x^{5}-x^{4}+3$
Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=x^{2}+x+k$.
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(x)=x^{3}$
Write the degree of each of the following polynomials :
$(i)$ $5 t-\sqrt{7}$
$(ii)$ $3$
Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x$.